Search results for "Sequence spaces"

showing 2 items of 2 documents

A bilinear version of Orlicz–Pettis theorem

2008

Abstract Given three Banach spaces X, Y and Z and a bounded bilinear map B : X × Y → Z , a sequence x = ( x n ) n ⊆ X is called B -absolutely summable if ∑ n = 1 ∞ ‖ B ( x n , y ) ‖ Z is finite for any y ∈ Y . Connections of this space with l weak 1 ( X ) are presented. A sequence x = ( x n ) n ⊆ X is called B -unconditionally summable if ∑ n = 1 ∞ | 〈 B ( x n , y ) , z ∗ 〉 | is finite for any y ∈ Y and z ∗ ∈ Z ∗ and for any M ⊆ N there exists x M ∈ X for which ∑ n ∈ M 〈 B ( x n , y ) , z ∗ 〉 = 〈 B ( x M , y ) , z ∗ 〉 for all y ∈ Y and z ∗ ∈ Z ∗ . A bilinear version of Orlicz–Pettis theorem is given in this setting and some applications are presented.

SequenceApplied MathematicsMathematical analysisBanach spaceBilinear interpolationAbsolute and strong summabilitySpace (mathematics)Sequence spacesSequence spaceCombinatoricsBounded functionBanach sequence spacesAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Norm estimates for operators from Hp to ℓq

AbstractWe give upper and lower estimates of the norm of a bounded linear operator from the Hardy space Hp to ℓq in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.

Hardy spacesAbsolutely summing operatorsVector-valued BMOVector-valued sequence spacesJournal of Mathematical Analysis and Applications
researchProduct